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Abstract

In this paper we study supervised and semi-supervised classification of e-mails. We consider two tasks: filing e-mails into
folders and spam e-mail filtering. Firstly, in a supervised learning setting, we investigate the use of random forest for auto-
matic e-mail filing into folders and spam e-mail filtering. We show that random forest is a good choice for these tasks as it
runs fast on large and high dimensional databases, is easy to tune and is highly accurate, outperforming popular algo-
rithms such as decision trees, support vector machines and naı̈ve Bayes. We introduce a new accurate feature selector with
linear time complexity. Secondly, we examine the applicability of the semi-supervised co-training paradigm for spam e-mail
filtering by employing random forests, support vector machines, decision tree and naı̈ve Bayes as base classifiers. The study
shows that a classifier trained on a small set of labelled examples can be successfully boosted using unlabelled examples to
accuracy rate of only 5% lower than a classifier trained on all labelled examples. We investigate the performance of co-
training with one natural feature split and show that in the domain of spam e-mail filtering it can be as competitive as
co-training with two natural feature splits.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

E-mail is one of the most popular, fastest and cheapest means of communication. It has become a part of
everyday life for millions of people, changing the way we work and collaborate [43]. E-mail is not only used
to support conversation but also as a task manager, document delivery system and archive [13,43]. The downside
of this success is the constantly growing volume of e-mail we receive. To deal with this problem and facilitate
efficient retrieval when needed, many people categorize e-mails and file them into folders. For more information
about the cognitive aspects of information organization and retrieval in e-mail see [13]. Prioritizing e-mail
according to its importance, and possibly sending the most important messages to a mobile device, is another
desirable characteristic of an e-mail management system. Finally, the rate of spam e-mail is also rapidly growing.
MessageLabs report that in October 2005 spam e-mails were 68% of all e-mails [28]. Some of the spam e-mails are
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unsolicited commercial and get-rich messages, others can contain offensive material. Spam e-mails can also clog
up the e-mail system by filling-up the server disk space when sent to many users from the same organization.

E-mail packages typically allow the user to hand construct keyword-based rules to automatically file e-mails
into folders and filter spam messages. However, most users do not create such rules as they find it difficult to use
the software or simply avoid customizing it [8]. In addition, manually constructing a set of robust rules is a dif-
ficult task as users are constantly creating, deleting, and reorganizing their folders. Even if the folders remain
the same, the nature of the e-mails within a folder may well change over time. The characteristics of the spam
e-mail (e.g. topics, frequent terms) also change over time as the spammers constantly invent new strategies to
deceive filters. Hence, the rules must be constantly tuned by the user which is a time consuming and error-prone
process. A system that can automatically learn how to classify e-mails into a set of folders is highly desirable.

In this paper we consider two e-mail classification tasks: automatic e-mail filing into folders and spam
e-mail filtering. These tasks are formulated as supervised and semi-supervised machine learning problems.
In a supervised setting, given a supervision in the form of a set of labelled training examples (e.g. e-mails
labelled as belonging to different folders such as work, teaching etc, or as spam and non-spam), the goal is
to build a classifier, that is then used to predict the category of an unseen incoming e-mail. In a semi-super-
vised setting, the goal is the same but the learning is achieved with less supervison, i.e. using a small set of
labelled e-mails, by taking advantage of the easily available unlabelled e-mails. This is motivated by the need
to reduce the large number of manually labelled examples that are required to build accurate classifiers using
supervised learning. We consider a specific semi-supervised paradigm, called co-training.

The contribution of this paper is as follows:

• In both supervised and semi-supervised setting for e-mail classification we study the application of Random
Forest (RF), which is one of the recent ensemble techniques. RF is particularly suitable for classifying text
documents as it is fast, easy to tune, and can handle large feature sets. We compare the learning behaviour
of RF and well established algorithms such as Support Vector Machines (SVM), Naı̈ve Bayes (NB) and
Decision Trees (DT), and show that RF outperforms them in both settings.

• We introduce a new feature selector TFV and show that it outperforms the widely used and computation-
ally more expensive IG.

• We study the portability of anti-spam filter across users.
• We conduct a large scale algorithm performance evaluation on the benchmark spam filtering corpora

LingSpam and PU1. We compare RF, DT, SVM, NB, stacking and boosted DTs using the same version
of the corpora, the same pre-processing and optimising the parameters of all algorithms. The last four algo-
rithms have been previously applied but using different pre-processing and on different versions of the cor-
pora which did not allow fair comparison.

• We investigate the performance of semi-supervised co-training using RF, SVM, NB and DT as base clas-
sifiers. We show empirically that co-training can be successfully used to learn from a small number of
labelled examples in the domain of spam filtering.

• Conventional semi-supervised co-training requires the dataset to be described by two disjoint natural fea-
ture sets. Most datasets have a single set of features which limits the applicability of co-training. We show
that if there is high data redundancy as in the domain of spam e-mail filtering, co-training with random
feature split is as competitive as co-training with natural feature split.

The paper is organised as follows. Section 2 discusses supervised classification of e-mails into folders and
spam filtering. Section 3 investigates the semi-supervised co-training classification for spam e-mail filtering.
Section 4 concludes the paper.

2. Supervised learning for e-mail classification

2.1. Problem statement

E-mail classification (e.g. filing e-mails into folders, spam filtering) is a supervised learning problems. It can
be formally stated as follows. Given a training set of labelled e-mail documents Dtrain ¼ fðd1; c1Þ; . . . ; ðdn; cnÞg,
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where di is an e-mail document from a document set D and ci is the label chosen from a predefined set of cat-
egories C, the goal is to induce a hypothesis (classifier) h : D! C that can correctly classify new, unseen e-mail
documents Dtest;Dtest 6�Dtrain. In the first task, C consists of the labels of the folders. In the second task, C con-
tains two labels: spam and non-spam (legitimate).

2.2. Previous work

E-mail classification has been an active area of research. Cohen [11] developed a propositional learning
algorithm RIPPER to induce ‘‘keyword-spotting rules’’ for filing e-mails into folders. The multi-class problem
was transformed into several binary problems by considering one folder versus all the others. The comparison
with the traditional information retrieval method Rocchio indicated similar accuracies. Cohen argued that
keyword spotting rules are more useful as they are easier to understand, modify and can be used in conjunc-
tion with user-constructed rules.

Bayesian approaches are the most widely used in text categorization and e-mail classification. They allow
quick training and classification and can be easily extended to incremental learning. While rule-based
approaches make binary decisions, probabilistic techniques provide a degree of confidence of the classifica-
tion, which is an advantage, especially for cost-sensitive evaluation. Sahami et al. [37] applied NB for spam
e-mail filtering using bag of words representation of the e-mail corpora and binary encoding. The performance
improved by the incorporation of hand-crafted phrases (e.g. ‘‘FREE!’’, ‘‘be over 21’’) and domain-specific
features such as the domain type of the sender and the percentage of non-alphabetical characters in the sub-
ject. Rennie’s iFile [35] uses NB to file e-mails into folders and suggest the three most suitable folders for each
message. The system applies stemming, removes stop words and uses document frequency threshold as feature
selector. SpamCop [31] is a system for spam e-mail filtering also based on NB. Both stemming and a dynam-
ically created stop word list are used. The authors investigated the effect of the training data size, different
rations of spam and non-spam e-mails, use of trigrams instead of words and also show that SpamCop outper-
forms Ripper. Provost’s experiments [33] also confirmed that NB outperforms Ripper in terms of classification
accuracy on both filing e-mail into folders and spam filtering.

MailCat [40] uses a nearest-neighbor (k-NN) technique and tf-idf representation to file e-mails into folders.
K-NN supports incremental learning but requires significant time for classification of new e-mails. Androut-
sopoulos et al. [4] found that Naı̈ve Bayes and a k-NN technique called TiMBL clearly outperform the key-
word-based spam filter of Outlook 2000 on the LingSpam corpora.

Ensembles of classifiers were also used for spam filtering. Sakkis et al. [38] combined a NB and k-NN by
stacking and found that the ensemble achieved better performance. Carreras et al. [8] showed that boosted
trees outperformed decision trees, NB and k-NN. Rios and Zha [36] applied RF for spam detection on time
indexed data using a combination of text and meta data features. For low false positive spam rates, RF was
shown to be overall comparable with SVM in classification accuracy.

We extend previous research on supervised e-mail classification by: (1) applying RF for both filing e-mails
into folders and filtering spam e-mails, comparing RF with a number of state-of-the-art classifiers and show-
ing that it is a very good choice in terms of accuracy, running and classification time, and simplicity to tune, (2)
introducing a new feature selector that is accurate and computationally efficient, (3) studying the portability of
an anti-spam filter across different users, and (4) comparing the performance of a large number of algorithms
on the benchmark corpora for spam filtering using the same version of the data and the same pre-processing.

2.3. Classification algorithms

2.3.1. RF

An ensemble of classifiers combines the decisions of several classifiers in some way in an attempt to obtain
better results than the individual members. Recent research has shown that an effective ensemble consists of
individual classifiers which are highly correct and disagree as much as possible on the input data predictions
[19,25]. Thus, methods for creating ensembles focus on generating disagreement amongst the ensemble mem-
bers, before combining their decisions with majority voting. Some ensemble methods exploit the diversity
within the classification algorithm, e.g. training neural network classifiers with different topologies, different
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parameters, different training algorithms or different initial weights, and then combining them. Other ensemble
methods alter the training data for each ensemble member by using different pre-processing methods, intro-
ducing noise or using different data sources. Typical examples of this approach are the widely used bagging
[7] and boosting [17] that generate disagreement amongst its individual members by randomly or iteratively
changing the training sets. A third group of approaches generate diversity by using different feature vectors
for each ensemble member, e.g. different sub-sets of the original features [20].

RF [6] is a recently introduced ensemble approach that combines decision trees [34]. The diversity in the
individual trees of RF is generated by both altering the data set using bagging and selecting random input
features. The RF algorithm is summarized in Table 1.

If n is the number of training examples and m is the number of features (attributes) in the original training
data, the training data for each of the t ensemble members is first generated by randomly selecting n instances
from the training data with replacement to form the bootstrapped samples. Then, for each data sample, a DT
is grown. When growing a typical DT, splits on all available attributes for a given node will be considered and
the best one will be selected based on performance indexes such as Gini index or Gain ratio. In RF, only a
small number kðk � mÞ of randomly selected features, available at the node, are searched. The number of fea-
tures k is kept fixed but for each split a new random set of features of size k is selected. Each tree is fully grown
and not pruned as opposite to the standard DT algorithm where pruning is typically applied. To classify a new
example, it is propagated through all t trees and the decision is taken by majority voting. In essence, RF is a
bagging ensemble of random trees.

The predictive performance of RF depends on the strength of the individual trees and their correlation with
each other. A tree with high strength has a low classification error. Ideally we would like the trees to be less
correlated and highly accurate. As the trees become less accurate or correlated, the RF’s performance decays.
The low level of correlation is achieved by using bagging and random feature selection which inject random-
ness in the RF algorithm and it generates dissimilar, and thus, low-correlated, trees. The strength and corre-
lation are also dependant on the number of features k. As k increases, both the correlation among the trees
and their accuracy tend to increase. As a trade-off, the value of k is typically set to k ¼ log2mþ 1 [6].

RF are able to overcome one of the biggest disadvantages of single decision trees – instability. Very often
small changes in the data result in a very different tree and big changes in predictions. The reason for this is the
hierarchical process of tree building – the errors made in the splits close to the root are carried down the entire
tree. RF reduces this variance by averaging the results of many decision trees.

It has been shown empirically that RF outperform single DT [41] in terms of classification accuracy. RF are
typically faster than standard DT as they consider less number of features when selecting an attribute and do
not involve pruning. RF has also been shown to run much faster and give comparable accuracy results to the
highly successful AdaBoost ensemble algorithm [6]. Breiman also proved that RF does not overfit. The ability
to run efficiently on large data sets and produce accurate results makes RF a very attractive algorithm for text
categorization.
Table 1
RF algorithm

Given:

n – number of training examples, m – number of all features, k – number of features to be used in the ensemble, t – number of ensemble
members

Create Random Forest (RF) of t trees:

For each of t iteration
1. Bagging

Sample n instances with replacement from training data
2. Random feature selection

Grow decision tree without pruning. At each step select the best feature to split on by considering only k randomly selected features
and calculating the Gini index

Classification:

Apply the new example to each of the t decision trees starting from the root. Assign it to the class corresponding to the leaf. Combine the
decisions of the individual trees by majority voting
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RF should not be confused with Decision Forest (DF) that are a random-subspace approach. DF generates
diversity among the trees by selecting different feature sub-sets for each ensemble member. The training data
for each tree is created by pseudo-randomly selecting k features and then growing a DT using only these fea-
tures. More details about our implementation and application of DF to e-mail classification can be found in
[23].

In our experiments the RF’s parameters were set to k ¼ 9 randomly selected features and t ¼ 10 trees.
2.3.2. Algorithms used for comparison

We compare the performance of RF with DT, SVM and NB classifiers. The purpose of the comparison
with DT is to test if the ensemble of random, unpruned trees, using only some of the features, is able to out-
perform a single pruned decision tree, using all features. SVM was chosen as one of the best performing clas-
sifiers in text categorization. NB is the most frequently used classifier in e-mail classification. Below is a brief
description of the algorithms we used and how we optimised their parameters. We used their Weka implemen-
tations [2].

SVM [42] is a very popular machine learning technique. It finds the maximum margin hyperplane between
two classes using the training data and applying an optimization technique. The decision boundary is defined
by a sub-set of the training data, the so-called support vectors. A multi-class problem is transformed into mul-
tiple binary sub-problems. SVM has shown good generalization performance on many classification problems,
including text categorization [14]. What makes it suitable for text categorization is its ability to handle high
dimensional features [21]. The Weka’s implementation of SVM is based on the Platt’s sequential minimization
optimization algorithm for training of the classifier [32].

DT is the most popular inductive learning algorithm [34]. The nodes of the tree correspond to attribute
tests, the links – to attribute values and the leaves – to the classes. To induce a DT, the most important attri-
bute (according to IG) is selected and placed at the root; one branch is made for each possible attribute value.
This divides the examples into subsets, one for each possible attribute value. The process is repeated recur-
sively for each subset until all instances at a node have the same classification, in which case a leaf is created.
To classify an example we start at the root of the tree and follow the path corresponding to the example’s
values until a leaf node is reached and the classification is obtained. To prevent overtraining DTs are typically
pruned.

NB [29] is a simple but highly effective Bayesian learner. It uses the training data to estimate the probability
that an example belongs to a particular class. It assumes that attribute values are independent given the class.
Although this assumption clearly has no basis in many learning situations including text categorization, Naı̈ve
Bayes can produce very good results.

We run some preliminary experiments to choose the parameters of the classifiers. The following setting were
used in all experiments: SVM – the default options and polynomial kernel of the SMO classifier; DT and NB –
default options of the J48 and Naı̈ve Bayes classifiers.
2.4. Data and pre-processing

2.4.1. E-mail corpora

2.4.1.1. Filing into folders. We used the e-mail corpus collected by Crawford et al. [12] that contains messages
from four different users (U1-4). In addition, we also used the e-mail of one of the authors (U5), collected over
one year. All users kept folders and e-mails that contained sensitive private information. The characteristics of
the corpus are given in Table 2.
2.4.1.2. Spam filtering. We used three corpora: LingSpam, PU1 and U5Spam, as shown in Table 3. The first
two are publicly available [1] while the third one is a subset of the U5 corpus. LingSpam [4] was created by
mixing spam e-mails received by a user with legitimate e-mails sent to the Linguist mailing list. PU1 [3] consists
of e-mails received by a user over 3 years. A representative dataset was constructed taking into account the
e-mails received by regular correspondents and removing duplicate e-mails received on the same day. The
corpus was encrypted for privacy reasons by replacing each token with a number.



Table 2
Filing into folders corpus – statistics

User # E-mails # Folders Folder size (min–max # e-mails)

U1 545 7 10–326
U2 423 6 4–418
U3 888 11 14–206
U4 926 19 4–507
U5 982 6 42–337

Table 3
Spam filtering corpora – statistics

Corpus # E-mails # Spam e-mails # Legitimate e-mails

PU1 1099 481 618
LingSpam 2893 481 2412
U5Spam 982 82 900
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An important characteristic of the LingSpam corpus is that the topics of the legitimate e-mails are linguis-
tically specific, although probably more varied than one might expect [4] as they contain, for example, job,
conference, software and other announcements. In contrast, the topics of the legitimate e-mails in U5Spam
and PU1 are not topic specific and more diverse. This implies that it should be easier to learn to discriminate
spam and legitimate e-mail on the LingSpam corpus than on PU1 and U5Spam.

2.4.2. Pre-processing of the corpora

The first step in the process of constructing an automatic classifier is the transformation of the e-mails into
a format suitable for the classification algorithms. We have developed a generic architecture for text catego-
rization, called LINGER [10]. It supports the bag of words representation which is the most commonly used in
text categorization. All unique terms (tokens, e.g. words, special symbols, numbers etc.) in the entire training
corpus are identified and each of them is treated as a single feature. A feature selection mechanism is applied to
choose the most important terms and reduce dimensionality. Each document is then represented by a vector
that contains a normalized weighting for every selected term, which represents the importance of that term in
the document.

2.4.2.1. Term extraction in the U1-5 corpora. In addition to the body of the e-mail, the following headers were
parsed and tokenized: Sender (From, Reply-to), Recipient (To, CC, Bcc) and Subject. Attachments are consid-
ered part of the body and are processed in their original format (binary, text, html). All these fields were trea-
ted equally and a single bag of words was created for each e-mail. The following symbols were used as token
delimiters and then discarded: <> ðÞ½�=n j � #% ^&�; : :; @ � ‘þ ¼ 000. Three other symbols (!, $, ?) were used
as delimiters and then kept as they often appear in spam e-mail. No stemming and stop word list were applied.

Next, words that only appear once in each corpus were discarded. Finally, words longer than 20 characters
were removed from the e-mail’s body. Such long words are usually strings in binary attachments. As a result,
the initial number of unique terms is reduced from about 9000 to 1000 for each corpus.

2.4.2.2. Term extraction in LingSpam and PU1. The processing of LingSpam and PU1 is described in [4,3].
Only the Body and Subject were used, discarding the other headers, attachments and HTML tags. This
may be a disadvantage as the Sender fields, attachments and HTML tags provide useful information for
the classification. For example, Graham [18] claims that the use of information from the headers is probably
the main reason why his Bayesian filter outperformed the one used in SpamCop [31]. Both LingSpam and PU1
are available in four versions depending on whether stemming and stop word list were used. Our previous
experiments [10] have shown similar results on all four versions. In this paper we report results on the lemm

version (only stemming used) as it is the most widely used version.



I. Koprinska et al. / Information Sciences 177 (2007) 2167–2187 2173
2.4.2.3. Features, weighting and normalization. Feature selection is an important step in text categorization as
text documents have a large number of terms. Removing the less informative and noisy terms reduces the com-
putational cost and improves the classification performance. The features are ranked according to the feature
selection mechanism and those with value higher than a threshold are selected. LINGER supports two feature
selectors: Information Gain (IG) and Term Frequency Variance (TFV).

IG [27] is the most popular and one of the most successful feature selection techniques used in text catego-
rization. Given a set of possible categories C ¼ fc1; . . . ; ckg, the IG of a feature f is defined as
IGðf Þ ¼ �
Xk

i¼1

P ðciÞ log P ðciÞ þ P ðf Þ
Xk

i¼1

P ðcijf Þ log P ðcijf Þ þ P ð�f Þ
Xk

i¼1

P ðcij�f Þ log P ðcij�f Þ
It measures how much knowing if f is present or absent in a document helps us to predict the category. The
importance of the feature is measured globally as the computation is done for each feature across all catego-
ries. IG has quadratic time complexity.

TFV is feature selector that we have developed. Like IG, it is category dependant. For each term f we com-
pute the term frequency (tf) in each category and then calculate the variance as
TFVðf Þ ¼
Xk

i¼1

½tfðf ; ciÞ �mean tfðf Þ�2
The normalising factor from the standard variance formula is ignored, as our goal is to rank features and se-
lect the ones with the highest score. Features with high variance across categories are considered informative
and are selected. For example, terms that occur predominantly in some of the categories will have high var-
iance and terms that occur in all categories will have low variance. TFV can be seen as an improvement of the
document frequency, which is the simplest method for feature reduction. For each term in the training cor-
pora, document frequency counts the number of documents in which the term occurs and selects features with
frequency above a predefined threshold. The assumption is that rare terms are not informative for category
prediction. Yang and Pedersen [44] compared several feature selectors and found that document frequency
is comparable to the best performing techniques (IG and v2 for feature reduction up to 90%. They concluded
that document frequency is not just an ad hoc approach but a reliable measure for selecting informative fea-
tures. However, document frequency is category independent and will simply select terms with high DF no
matter of their distribution in the categories. TFV addresses this problem by not selecting terms with high doc-
ument frequency if they appear frequently in each category, i.e. are not discriminating. Both TFV and docu-
ment frequency are highly scalable as they have linear complexity.

LINGER incorporates the three most popular feature weighting mechanisms: (1) binary, (2) term frequency
and (3) term frequency, inverse document frequency (tf-idf). In the first method weights are either 0 or 1 denot-
ing absence or presence of the term in the e-mail. In the term frequency method the weights correspond to the
number of times the feature occurs in the document. Term frequency weights are more informative than the
binary weights, e.g. knowing that ‘‘money’’ occurs 10 times in an e-mail is a better indicator that the e-mail is
spam than knowing that ‘‘money’’ simply occurs in this e-mail. The third method assigns higher weights to
features that occur frequently, but also balances this by reducing the weight if a feature appears in many doc-
uments. In [10], we compared these three weighting schemes, normalised at different levels (e-mail, category
and corpora). Term frequency normalised at category level was found to perform best and this is the feature
weighting used in this paper.

2.5. Performance measures

To evaluate performance we calculate accuracy (A), recall (R), precision (P) and F1 measure. Table 4
shows the definition of these measures in terms of the two-way contingency table for a binary classifier.

Accuracy is the most commonly used measure in machine learning. Precision, recall and their combination,
the F1 measure, are the most popular criteria used in text categorization. In the multi class task of general mail
classification, macro-averaging [39] was used – precision, recall and the F1 measure were first calculated for
each class and the results were then averaged.



Table 4
Contingency table for binary classifier

E-mails # Assigned to folder ci # Not assigned to folder ci

# From folder ci tp fn
# Not from folder ci fp tn

A ¼ tpþtn
tpþtnþfpþfn ; P ¼

tp
tpþfp ;R ¼

tp
tpþfn ; F 1 ¼ 2PR

PþR
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In the spam filtering experiments we calculated accuracy, spam recall (SR), spam precision (SP) and spam

F1 measure (SF1). SR is the proportion of spam e-mails in the test set that are classified as spam, i.e. the spam
e-mails that the filter manages to block. It measures the effectiveness of the filter. SP is the proportion of e-
mails in the test data classified as spam that are truly spam, i.e. it measures filter’s protection (and overpro-
tection) ability.

Discarding a legitimate e-mail is of greatest concern to most users than classifying a spam message as legit-
imate. This means that high SP is particularly important. As suggested in [3], blocking a legitimate message is
considered a bigger error, k times more costly, than non-blocking a spam message. To make accuracy sensitive
to this cost, weighted accuracy (WA) was defined: when a legitimate message is misclassified, this counts as k
errors. Similarly, when legitimate message is correctly classified, this also counts as k successes. More formally,
WA is defined as follows:
WA ¼ knl!l þ ns!s

kN l þ N s
where Nl is the number of legitimate e-mails, Ns is the number of smap e-mails, nA!B is the number of e-mails
belonging to class A classified as belonging to class B, A;B 2 fl; sg, l – legitimate, s – spam e-mails.

We also follow the proposed three cost scenarios [3]:

(a) no cost considered (k ¼ 1), e.g. flagging messages that are predicted as spam but not blocking them;
(b) semi-automatic scenario for moderately accurate filter (k ¼ 9), e.g. notifying senders about their blocked

e-mails and asking them to re-send the e-mail following special instructions that will allow the e-mail to
pass the filter. The higher value of k reflects the extra cost of re-sending the e-mail that is considered to be
the same as manually deleting nine spam e-mails;

(c) completely automatic scenario for a highly accurate filter (k ¼ 999), e.g. removing blocked messages.
The very high value of k reflects the recovery cost when a legitimate e-mail was misclassified as spam
and deleted.

It should be noted that there is no research justification for using exactly k ¼ 9 or 999. These values depend
on the human perception of the associated cost. We used the same values for the reasons of consistency and
comparison with previous research.

For evaluation of all results we used stratified ten-fold cross validation which is known to provide a good
estimate of the generalization error of a classifier. Each corpus is split into 10 non-overlapping segments of
equal size. Each segment is stratified, i.e. contains approximately the same number of examples from each
class. A classifier is trained 10 times, each time using a version of the data in which one of the segments is
omitted (training data). Each trained classifier is then tested on the data from the segment which was not used
during training. The results are averaged over the 10 classifiers to obtain an overall error estimate.

2.6. Results and discussion

In all experiments IG and TFV were used as feature selectors and the best scoring 256 features were chosen.
Tf weighting with category (folder) level normalization was applied.

2.6.1. Filing into folders

2.6.1.1. Overall performance. The classification results are summarized in Table 5. They vary significantly
across the users, e.g. the accuracy is between 81% and 96%, and the F1 results are between 42% and 94%



Table 5
Performance of RF on filing e-mails into folders (10 trees, 9 features)

Feature selection A (%) R (%) P (%) F1 [%]

U1
RF-TFV 92.11 80.91 89.05 84.21
RF-IG 91.01 77.30 92.29 83.19

U2
RF-TFV 93.24 70.35 87.95 76.27
RF-IG 90.09 62.63 84.74 67.15

U3
RF-TFV 81.32 56.53 77.73 58.83
RF-IG 68.32 43.76 68.56 46.16

U4
RF-TFV 81.97 41.98 48.44 42.56
RF-IG 71.16 31.32 44.06 33.85

U5
RF-TFV 96.03 92.99 95.62 94.16
RF-IG 93.69 90.94 94.63 92.58
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(for the better feature selector TFV). This variation is due to the different classification styles. While U1 and
U5 categorize e-mails based on the topic and sender (e.g. colleagues, friends, MachineLearningCourse, thesis),
U3 do this based on the action performed (e.g. Delete, Keep, Read & Keep, ToActOn) while U2 and U4 use
all strategies – based on the topic, sender and action performed. Thus, some mailboxes of U2 and U4 do not
contain semantically similar e-mails but e-mails grouped by action and time, which highly complicate learning.
It is interesting to note the relatively high accuracy but low F1 score for U3 and U4. This is due to the imbal-
anced class distribution. In both cases there is a big folder Read & Delete that contains 1/4 and 1/2 of all e-
mails, respectively. Although these e-mails are semantically different, they are classified surprisingly well based
on the sender. This highlights the importance of the headers other than Subject. As a result, it is classified very
accurately based on sender. Another difficulty is the large ratio of the number of folders over the number of e-
mails for U2 and U4 which also makes learning difficult as some folders do not contain enough training
examples.

To summarise, the results show that the problem of e-mail filing into folders is quite different than the stan-
dard text categorization problem. Firstly, we cannot expect that an automatic text-based e-mail system will be
helpful for users who file e-mails based on criteria different than content or sender. Thus, an automatic system
may perform very well on some users and very badly on others. Secondly, the classification task is highly
imbalanced. Some folders contain a small number of e-mails as user activities and interests change over time,
while others keep growing. Thirdly, the content of the big folders may change over time and requires address-
ing the concept drift, as more examples will not lead to better classification. Finally, some of the e-mails can be
classified in more than one folder. A good strategy to address this issue was proposed by Rennie [35] who cal-
culates the probabilities for assigning an e-mail to each folder and recommends the three highly ranked fold-
ers. The results show that the correct folder is among the three top folders with very high accuracy. An
additional advantage is that the users are in control to take the final decision, while the system is assisting them
by simplifying the decision making.

2.6.1.2. Comparison with other classifiers. Fig. 1 shows a comparison of RF with DT, SVM and NB classifiers.
RF outperforms the other algorithms in 36 out of the 40 cases. DT is the second best algorithm followed by
SVM. DTs have been overlooked in the area of text categorization. A big advantage over the other classifiers
is that a DT can be converted in set of rules explaining the classification rule. NB is the worst performing algo-
rithm which confirms previous research that NB is a popular but not the best algorithm for text categorization
[39].

It should be noted that the total number of features f that are seen by RF during learning is much smaller
than the number of features seen by the other classifiers. The number of features visited by a tree from RF can
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Fig. 1. Classification accuracy [%] on filing e-mails into folders with (a) TFV and (b) IG as feature selectors.
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be estimated as f ¼ N 1� 1� k
N

� �S
� �

[24], where N is the total number of features (256 in our case), S is the

number of tree nodes and k is the size of the randomly selected features (10 in our experiments). Assuming that
S ¼ 10, this means that a tree from RF will see only 84 features in comparison to 256 by the other classifiers.
This saving is more dramatic for higher N and smaller tree complexity S.

The time taken to build the classifiers is shown in Table 6. It is an important consideration as classifiers
must be kept up to date and this requires re-training. The fastest algorithm was NB (although it was the less
accurate), the slowest was SVM, almost 10 times slower than NB. RF was fast enough – it built a classifier for
4.71 s on average. It can also be estimated that a tree from RF is built n/k times faster than an unpruned DT
which was confirmed in our experiments. The classification time is another important consideration in real-
world systems, and all of the algorithms showed good results.

Another important advantage of RF is the small number of tuneable parameters – number of trees and
number of random features. In contrast, SVM is a very complex algorithm, with many parameters to adjust.
DT requires pruning and smoothing parameters, NB – smoothing parameters.

2.6.1.3. Effect of the feature selector. An important observation is that the simpler feature selection mechanism
TFV was more effective than IG. As Fig. 1 shows, the classification accuracy using TFV was better than IG for
all users and classifiers (40 combinations in total) except for two cases – SVM on U1 (tie) and NB on U1 (IG
better with 0.37%). This result is also confirmed by the F1 scores averaged across all users, see Table 7.

A comparison of the top 100 terms with highest IG and TFV scores shows that in both cases the best scor-
ing features are: (1) terms that are frequent in legitimate, linguistic oriented e-mails, such as ‘‘language’’,
‘‘university’’, ‘‘linguistic’’, ‘‘conference’’, ‘‘abstract’’, ‘‘workshop’’, ‘‘theory’’; (2) terms that are frequent in
Table 6
Time (s) to build the classifier for TFV (results for IG are similar)

RF DT SVM NB

U1 3.54 0.79 7.60 0.11
U2 3.68 1.84 16.05 0.21
U3 3.29 1.39 6.69 0.10
U4 6.79 3.63 48.88 0.23
U5 6.26 0.68 9.26 0.32

Average 4.71 1.66 17.70 0.19

Table 7
F1 results (%) averaged across all users for the two feature selectors (TFV and IG)

Classifier TFV IG

RF 71.20 64.58
DT 74.59 67.15
SVM 65.92 52.56
NB 64.91 53.85
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spam e-mail but not in legitimate e-mails, such as ‘‘free’’, ‘‘money’’, ‘‘you’’, ‘‘!’’, ‘‘$’’. TFV rates higher and
selects more punctuation and special symbols such as ‘‘_’’, ‘‘*’’, ‘‘:’’, ‘‘(‘‘, ‘‘)’’, ‘‘+’’, and also action verbs such
as ‘‘can’’, ‘‘have’’, ‘‘make’’, ‘‘will’’, ‘‘send’’. Sahami et al. [37] also found that spam e-mails contain a larger
proportion of non-alphanumeric characters.

2.6.2. Spam filtering

In this section we investigate the performance of RF for spam e-mail classification, compare it with other
classifiers, study the effect of the two feature selectors TFV and IG and also the portability of an anti-spam
filter across users.

2.6.2.1. Overall performance. The classification results for the lemm versions of LingSpam and PU1 are given
in Table 8. By comparing WA and SF1 scores, we can see that overall RF is the best classifier, obtaining the
most consistent results on the two corpora for both IG and TFV. When IG was used as feature selector, RF
achived the best WA for both LingSpam and PU1, and the three cost-sensitive scenarios. When TFV was used
as feature selector, the best WA for both corpora and three scenarios was achieved by DT and SVM which
classified all examples correctly. In this case, RF came second misclassifying only two non-spam e-mails as
spams on LingSpam, and six e-mails on PU1 (four non-spams as spams and two spams as non-spams).
The second best classifier is DT. The worst classifier is NB falling behind the winner in terms of SF1 with
10–14% on LingSpam and 12–15% on PU1. NB (and also to the lesser extent SVM-IG) obtained high SP
at the expense of lower SR, i.e. misclassified more spams than non-spams. We should keep in mind that
for spam filtering SP is more important than SR. Again, overall, TFV was found to be better feature selector
than IG.

As expected, it was easier to discriminate between spam and legitimate e-mails in LingSpam because of the
topic-specific nature of its legitimate e-mails. A baseline accuracy can be calculated as classifying all test exam-
ples to the majority class in the training set (also called ZeroR classifier). The baselines are 83.37% for LingS-
pam (very high) and 56.23% for PU1. All algorithms perform above the baseline which means that there is no
indication for overtraining.

The cost sensitive evaluation on LingSpam shows that all algorithms were insensitive to the higher weight
of the spam misclassification. The reason for this is the ceiling effect in LingSpam – very few examples were
misclassified. In PU1, WA for k ¼ 9 and 999 does not change significantly or goes up in comparison to k ¼ 1
Table 8
Performance of RF, DT, SVM and NB on spam filtering (%)

k ¼ 1 k ¼ 9 k ¼ 999

WA SP SR SF1 WA WA

LingSpam
RF-IG 99.31 98.30 97.50 97.90 99.62 99.67
DT-IG 98.48 95.60 95.20 95.40 99.04 99.13
SVM-IG 96.85 99.00 81.90 89.60 99.45 99.83
NB-IG 96.13 92.80 83.20 87.70 98.38 98.71
RF-TFV 99.94 99.60 100 99.80 99.92 99.92
DT-TFV 100 100 100 100 100 100
SVM-TFV 100 100 100 100 100 100
NB-TFV 95.61 91.70 80.90 86.00 98.17 98.55

PU1
RF-IG 98.27 97.9 98.1 98.00 98.36 98.38
DT-IG 92.81 90.90 92.90 91.90 92.74 92.72
SVM-IG 93.18 95.70 88.40 91.90 96.24 96.92
NB-IG 86.81 94.00 74.60 83.20 94.54 96.26
RF-TFV 99.45 99.20 99.60 99.40 99.37 99.35
DT-TFV 100 100 100 100 100 100
SVM-TFV 100 100 100 100 100 100
NB-TFV 89.81 97.40 78.80 87.10 96.82 98.37
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as the proportion of misclassified legitimate e-mails is much smaller than the proportion of misclassified
spams.

We also compare RF with the ensemble approaches used by Sakkis et al. [38] and Carreras and Marquez
[8]. Sakkis et al. applied stacking on Lingspam, with NB and k-NN as base classifiers and k-NN as a meta
classifier. Carreras and Marquez applied the AdaBoost algorithm to combine decisoon trees on both LingS-
pam and PU1. To eliminate the effect of possible different pre-processing and ensure fair comparison, we run
these algorithms on our versions of LingSpam and PU1 using IG as feature selector, as in their experiments.
We also optimised the parameters of the algorithms. Table 9 reports the best results that we achieved, which
are actually better than the results reported in [38] and [8]. We used the following parameters: 7 nearest neigh-
bours in stacking, 12 trees for the boosting. Boosted DTs performed as good as RF. AdaBoost, however, was
4 times slower to train than RF (Table 10), and also significantly slower at classification. Stacking performed
worse than RF in terms of classification accuracy. It was also the slowest algorithm to run: 8–23 times slower
than RF, and the classification time was also very long due to the use of k-NN algorithm. Thus, in the domain
of spam filtering RF showed much faster training and classification time than boosted DTs while achieving
comparable classification results, which confirms Breiman’s results on other datasets [6].

2.6.2.2. Anti-spam filter portability evaluation. Portability of an anti-spam filter is an interesting question and
an important issue in real applications. Having a machine learning system that can learn from the e-mail of
each user allows us to build a personalised spam filter. Such a filter can be more accurate as it will capture the
specific characteristics of the user’s legitimate and spam e-mail. Building an accurate personalised filter, how-
ever, requires that each user labels a large number of e-mails as legitimate and spam to create a training set,
which is time consuming. Effort and time can be saved if a user can obtain a copy of a trained classifier from
another user, that will serve as a starting point, and then be re-trained with additional labelled examples.
Another possible solution is to use co-training as discussed in Section 3.

We tested the portability across corpora using LingSpam and U5Spam, see Table 11. Note that PU1 cannot
be used for cross training as it is encrypted. We trained a filter on LingSpam and then test it on U5Spam (and
Table 9
Performance of stacking and boosted DTs on spam filtering (%) (IG as feature selector)

k ¼ 1 k ¼ 9 k ¼ 999

WA SP SR SF1 WA WA

LingSpam
Stacking 97.10 90.8 91.90 91.30 98.00 98.13
Boosted DTs 99.59 99.60 97.90 98.70 99.87 99.92

PU1
Stacking 92.36 92.00 90.40 91.12 93.58 93.85
Boosted DTs 98.18 98.10 97.77 97.90 98.48 98.54

Table 10
Time to build the classifier (s)

RF Stacking Boosted DTs

LingSpam 15.77 366.77 88.20
PU1 6.92 56.45 26.52

Table 11
Portability across corpora using RF (TFV as feature selector, similar results for IG)

Training set Testing set A SR SP SF1

(a) LingSpam U5Spam 37.37 75.60 9.40 16.80
(b) U5Spam LingSpam 13.45 79.60 13.70 23.40



Table 12
Confusion matrices

# Assigned as (a) (b)

Spam Not spam Spam Not spam

Spam 62 20 383 98
Not spam 595 305 2406 6
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vice versa), using features selected from the training corpus. Typical confusion matrices are given in Table 12.
The good news is that in both cases spam e-mails are relatively well recognised (SR = 75.60 and 79.60) which
can be explained with the common characteristics of spam e-mails across the two corpora. However, a large
proportion of legitimate e-mails were misclassified as spam which is reflected in the low SP. This can be
explained with the different nature of the legitimate e-mail of LingSpam (linguistics related) and U5Spam
(more diverse). The features selected based on LingSpam are too specific and do not act as a good predictor
for the non-spam e-mails of U5Spam. And vice versa, the features selected based on U5Spam are too general
to classify correctly the domain specific legitimate e-mails in LingSpam.

Hence, based on our experiments we cannot conclude that the anti-spam filter is portable. Spam e-mails are
classified relatively well due to the common characteristics of spam e-mails that are captured by the filter.
More extensive experiments with diverse, non-topic specific corpora, are needed to determine the portability
of anti-spam filters across different users, and especially the ability to correctly classify legitimate e-mails.

3. Semi-supervised learning for spam e-mail filtering

Supervised machine learning algorithms learn from examples that are labelled with the correct category. To
build an accurate classifier, a large number of labelled examples is needed. Obtaining labelled data, however,
requires human effort and is a time consuming and tedious process. For example, to build an accurate classifier
for spam e-mail filtering, hundreds of labelled training examples (spam and non-spam) are required. A typical
user needs to label the incoming e-mail for several days or even weeks before an effective classifier can be built
and used to automatically filter e-mail.

To overcome this problem, Blum and Mitchell [5] introduced a new paradigm, called co-training, that takes
advantage of the more abundant unlaballed data. Co-training learns from a small set of labelled data and a
large set of unlabelled data. Blum and Mitchell presented a PAC-analysis of co-training and stated two main
dataset requirements for successful co-training. Firstly, the dataset must be described by two disjoint sets of
features (called views) that are sufficiently strong. That is, using each view separately, a classifier can be built
with reasonably high accuracy. Secondly, the two views should be conditionally independent given the class.
They proved that if these conditions are satisfied, a task that is learnable with random noise is learnable with
co-training.

In this section, we investigate the applicability of co-training for spam e-mail filtering. We consider the
words from the body and the words from the subject as two natural feature sets. We are not only interested
in how useful co-training is in the domain of spam e-mail filtering, but also when co-training with a random
split of features is likely to be beneficial. The second question is important as in the great majority of practical
situations, two natural sets of features do not exist, or the data collected may only belong to one of the pos-
sible natural feature sets. To answer this question, we compare co-training with a single natural feature set and
co-training with two natural feature sets. As base classifiers we employ RF, SVM, NB and DT and study their
performance in a co-training environment. Previous research on co-training uses NB as a base classifier. There
is only one study [22] comparing SVM with NB, and showing that the performance of co-training depends on
the learning algorithm used. We further investigate this finding.

3.1. Problem statement

E-mail classification can be stated as a semi-supervised problem as follows. Given a training data
Dtrain ¼ fDlab [ Dunlabg that consists of a small set of labelled e-mail documents Dlab ¼ fðd1; c1Þ; . . . ; ðdn; cnÞg
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and a large set of unlabelled e-mail documents Dunlab ¼ fdi; . . . ; dmg, where di is an e-mail document from a
document set D and ci is the label chosen from a predefined set of categories C, and Dlab \ Dunlab ¼ ;, the goal
is to induce a hypothesis (classifier) h : D! C that can correctly classify new, unseen e-mail documents
Dtest;Dtest 6�Dtrain.

3.2. The co-training algorithm

In a given application, it may be possible to split up all the features into two sets (views) so that we can
build two independent classifiers that can still label the instances correctly. These views are said to be redun-

dantly sufficient. As an example, suppose that e-mails can be classified accurately with just the header infor-
mation (sender, subject, etc.) or just the content in the e-mail body.

The two classifiers are trained with a small set of labelled instances to induce two weak classifiers. They are
then employed in a loop to classify the unlabelled examples. Each classifier selects the most confidently pre-
dicted examples and adds them to the training set. Both classifiers then re-learn on the enlarged training set.
The loop is then repeated for a predefined number of iterations. The co-training algorithm is summarized in
Table 13.

The intuition behind this algorithm is as follows. An example may be confidently and correctly predicted by
the first classifier using the first set of features, and misclassified by the second classifier using the second set of
features. As the first classifier makes a confident prediction, the example will be transferred to the labelled set
together with the predicted label. This will allow the second classifier to learn from this example and adjust
better in future.

For example, suppose we have two e-mail classifiers using the subject headers and words in the body,
respectively. The first one has been trained to categorize any e-mail with the word ‘‘assignment’’ to be placed
in the folder ‘‘teaching’’. If another e-mail comes along with ‘‘assignment’’ in its subject, the first classifier will
be very confident that this message should be put in the folder ‘‘teaching’’, even though the second classifier
may be unsure based on the information in the e-mail’s body. By transferring the example in the labelled set,
the second classifier will learn that the words in the body indicate class ‘‘teaching’’.

3.3. Previous work

Blum and Mitchell [5] performed the first experiments on co-training. The task was to identify the home
web pages of academic courses from a large collection of web pages collected from several Computer Science
Table 13
Co-training algorithm

Given:

– a small set L of labelled examples
– a large set U of unlabelled examples
– two feature sets (views) V1 and V2 describing the examples

Training:

Create a pool U0 by randomly choosing u examples from U

Loop for k iterations:
Learn classifier C1 from L based on V1

Learn classifier C2 from L based on V2

C1 labels examples from U 0 based on V1and chooses the most
confidently predicted p positive and n negative examples E1

C2 labels examples from U 0 based on V2and chooses the most
confidently predicted p positive and n negative examples E2

E1 and E2 are removed from U 0 and added with their labels to
L

Randomly choose 2p + 2n examples from U to replenish U0

End

Classification of new examples:

Multiply the probabilities output by C1 and C2
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departments. They used the following natural feature split: the words present in the web page (page-based
classifier) and the words used in another page’s link that pointed to the page (hyperlink-based classifier).
The results showed that the error rate of the combined classifier was reduced from 11% to 5%.

Kiritchenko and Matwin [22] applied co-training to the domain of e-mail classification into folders. They
found that the performance of co-training is sensitive to the learning algorithm used. In particular, co-training
with NB worsens performance, while SVM improves it. The authors explained this with the inability of NB to
deal with large sparse datasets. This explanation was confirmed by better results after feature selection.

Nigam and Ghani [30] compared the performance of co-training with the Expectation Maximization (EM)
algorithm. In their first experiment, co-training was applied to the web pages database from [5]. The results
showed that co-training using NB was not better than EM even when there is a natural split of features. Both
EM and co-training with NB improved the performance of the initial classifier by 10%. The second experiment
investigated the sensitivity of co-training to the independence assumption. A semi-artificial dataset was created
so that the two feature sets are truly conditionally independent. In addition, the condition of redundantly suf-
ficient features was met, since the NB trained on each of the data set separately was able to obtain a small
error. It was found that co-training with NB well outperformed EM, and even outperformed NB trained with
all instances labelled. Their third experiment involved performing co-training on a dataset where a natural
split of feature sets is not used. The two feature sets were chosen by randomly assigning all the features of
the dataset into two different groups. This was tried for two datasets: one with a clear redundancy of features,
and one with an unknown level of redundancy and non-evident natural split in features. The results indicated
that the presence of redundancy in the feature sets gave the co-training algorithm a bigger advantage over EM.

The results of these experiments led to the conclusion that co-training is indeed dependant on the assump-
tions of conditional independence and redundant sufficiency. However, even when either or both of the
assumptions are violated, the performance of co-training can still be quite useful in improving a classifier’s
performance. In particular, in many practical settings, co-training is likely to be beneficial.

We extend previous research by addressing the following questions: (1) how useful is co-training with nat-
ural feature sets for spam e-mail filtering, (2) how useful is co-training with a single natural feature set for
spam e-mail filtering, and when, in general, it is likely to be beneficial, (3) how sensitive is co-training to
the learning algorithms used; we compare RF, SVM, DT and NB.

3.4. Experimental setup

We used the LingSpam corpus, with the standard bag-of-words representation and IG for feature selection,
as described in Section 2. Each e-mail was broken up into two sections: the words found in the subject header
and the words found in the main body of the message. A summary of the feature sets (views) used in the exper-
iments is given in Table 14. The feature selection was applied individually to each view of the data using IG.
Upon inspection of the word lists and their IG values, it was decided that the top 200 words was a suitable
cut-off. This means a drastic dimensionality reduction – the percentage of the features retained after feature
selection is 0.6% for All, 0.9% for Body, 1.3% for Half1 and Half2, and 15% for Subject. As in the previous
experiments, each document was represented using the normalised term frequencies of the selected 200
features for the given view of the data.

An examination of the selected 200 features shows that the feature lists for the Body and All views are very
similar, both in terms of feature rank and IG value. In contrast, only 48% of features in Subject also appear in
Table 14
Feature sets (views) used

View Description

Body All words that appear in the body of an e-mail
Subject All words that appear in subject of an e-mail
All All words that appear in the body and subject of an e-mail
Half1 A random selection of half of the All feature set
Half2 The other half of the features not found in Half1



Table 15
Top 20 features selected by IG for the various views

Subject Body Half1 Half2 All

1 ! language language ! !
2 free ! remove free language
3 you remove university linguistic remove
4 your university your you free
5 language free @ money university
6 $ linguistic our click linguistic
7 : you today just you
8 linguistic your sell get your
9 this money english % money
10 business click market advertise click
11 just @ product papers @
12 workshop our business want our
13 conference today linguistics buy today
14 get sell company edu sell
15 of english million ll english
16 internet market internet every get
17 million product save purchase business
18 com business income com market
19 capitalfm just day best just
20 ? get $ over product
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All; their rank is different and their IG value is much lower as they occur in smaller number of e-mails. Half1

and Half2 are mutually exclusive views by design, and each of the feature lists contains a subset of All with the
same IG values and also approximately 100 other terms. Table 15 shows the top 20 words for each view.

The Body and Subject views will be referred to as the natural views, while Half1 and Half2 will be referred to
as the random views.

3.5. Supervised experiment – results and discussion

The objective of this experiment is to determine how redundantly sufficient the different views are. Good
classification performance on a given view of the data indicates that it is redundantly sufficient.

Table 16 contains the accuracy results obtained using 10-fold cross validation. Except NB with Subject, all
other feature sets, with all classifiers, obtained very high accuracy, with RF being the best classifier. The best
performing feature sets were All, Body and Half1, closely followed by Half2. Thus, the performance of Body
and the random halves alone is almost the same as using all features.

The accuracy of the Subject feature set, with all classifiers except NB, is only 1–8% lower than the accuracy
of the other feature sets. Even the 75% accuracy rate of Subject with NB is higher than expected. We antic-
ipated worse performance as the number of tokens that appear in the subject is significantly lower than the
number of tokens present in the body. Consequently, the IG scores for Subject were much lower than for
the other feature sets, and it was not clear how discriminative the selected words were. On the other hand,
the words from the subject tend to summarise the main topics and are more meaningful than the words
in the body. However, this is typically the case for legitimate e-mails, but not necessarily true for spam e-mails
Table 16
Accuracy (%) using various feature sets in the supervised experiment

Classifier Subject Body Half1 Half2 All

RF 96.9 99.6 99.1 99.2 99.9
DT 90.0 97.7 96.9 97.3 97.4
SVM 92.6 95.9 95.8 93.7 99.9
NB 74.9 95.4 95.6 99.8 95.8

Average 88.7±9.6 97.2±1.9 96.9±1.6 97.5±2.7 98.3±2.0
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where sometimes the words in the subject are different than the words in the body in order to deceive the user
or spam filter.

We noticed that the performance of NB on the Subject data can be improved by the use of entropy-based
discretization [15], which is more similar to the in-built discretization procedure used in tree classifiers such as
RF and DT. These three classifiers cannot directly handle numeric attributes and require discretization as a
pre-processing step. The in-built discretization procedure for NB in Weka uses probability density functions
and assumes a normal distribution. This assumption is clearly violated on the sparse Subject data.

The main conclusion we can draw is that each of the natural and random views are strong enough to learn
the classification tasks with the given classifiers. This, however, does not guarantee that co-training will work
well. The number of initially labelled examples should allow the construction of a classifier that is accurate
enough to label the most confident examples correctly and sustain co-training improvement. Also, it is unre-
alistic to expect that the view independence assumption holds in the domain of spam e-mail filtering, and this
may also affect the performance.

3.6. Co-training experiment – results and discussion

In this experiment we investigate the performance of the co-training algorithm with natural and random
views for spam e-mail filtering.

For evaluation of the co-training results we used a procedure that resembles 10-fold-cross validation as
suggested in [16]. The standard 10-fold-cross validation procedure uses 90% of the data for training and
10% for testing. The co-training algorithm, on the other hand, uses only a small number of labelled and
unlabelled training examples. If 10-fold cross validation is applied in a co-training setting, many examples
will not be used neither for training nor for testing. A better utilization of the available data is to increase
the size of the test set which will improve the evaluation of the classifier without significantly reducing its
quality.

We generated 10 stratified folds. Each time 40% of the data was used for testing and the remaining 60% for
training. The required number of initially labelled examples were randomly selected from the first fold of the
training data, and the remaining examples from this fold and the other 5 folds were used as unlabelled exam-
ples. The experiments were repeated 10 times and the results averaged, each time using different fold to select
the labelled examples, and creating different unlabelled and test sets by sliding 1 fold. Thus, each fold is used
once to create the labelled set, five times for the unlabelled set and four times for the test set.

We started off with a labelled set of 5 spam and 5 legitimate e-mails. The ratio of spam to legitimate e-mails
in LingSpam is 1:5. Following this distribution, 2 newly labelled spam and 10 legitimate e-mails were trans-
ferred from the unlabelled set to the labelled set on each co-training iteration. We also closely followed the
original algorithm by Blum and Mitchell [5] using a small unlabelled pool U 0 of 50 randomly selected examples
from U. At each iteration C1 and C2 label the examples from U 0 and the most confidently predicted 1 spam
and 5 legitimate e-mails by each classifier are transferred to the labelled set L. The experiments were run for 20
co-training iterations. The prediction of the co-training classifier on new example is calculated by multiplying
the class probabilities output by the two classifiers C1 and C2.

Table 17 summarises the results. The column it0 shows the accuracy of the classifier trained on the initial
10 labelled examples before the co-training (iteration 0). The column it20 shows the accuracy at the end of
co-training, i.e. after iteration 20, where the number of training examples is 250 (10 initially labelled +20 ·
Table 17
Accuracy (%) in the co-training experiment

Classifier Natural split Random split

It0 It20 Increase (it20–t0) Gap (goal-it20) It0 It20 Increase (it20–it0) Gap (goal-it20)

RF 84.8 94.9 10.1 5.0 89.1 94.7 5.6 5.2
DT 78.0 87.8 9.8 9.6 70.5 83.0 12.5 14.4
SVM 61.0 87.1 26.1 12.8 69.5 85.9 16.4 14
NB 89.1 90.8 1.7 5.8 80.6 88.9 8.3 6.7
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Fig. 2. Co-training learning curves for RF, DT, SVM and NB.
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12 self-labelled). The column increase presents the difference between iteration 20 and 0; thus, positive num-
bers indicate improvement over the base classifier trained on the initial labelled examples. The column gap

indicates the difference between the goal performance and it20’s performance. As a goal performance we con-
sider the accuracy of a supervised classifier trained on the labelled version of all training data, using 10-fold
cross-validation (i.e. trained on 2604 examples). Thus, the goal accuracies are listed in the last column of Table
16. Fig. 2 show the co-training learning curves for all classifiers, and also the goal performance.

By examining the improvement over the initial classifier (column increase), the accuracy value at the end of
co-training (column it20) and the difference between the goal accuracy and the accuracy at the end of co-train-
ing (column gap), the first conclusion we can draw is that co-training was successful for all classifiers, both for
natural and random views, as all classifiers reduced the error of the initial classifier. The best classifiers was RF
achieving the highest absolute accuracy value and the smallest gap, for both natural and random views. NB
came second with 4–6% lower accuracy value and 0.8–1.5% bigger gap despite the fact that its Subject view
was not as strong. SVM started co-training with the weakest classifier (it0) and achieved the greatest increase
but did not reach the accuracy rate of RF falling behind with 8–9%.

The second observation is that co-training with random views produces results that are comparable with
using the natural views. There are two reasons for this. Firstly, the All view was found to be redundantly suf-
ficient, as discussed in the previous section. That is, using a random selection of half of the features from all
the features resulted in classifiers that perform almost the same as a classifier using all the features available.
Secondly, the amount of the initially labelled examples seems to be enough to build an initial weak classifier
that is accurate enough to sustain co-training improvement.

As view independence is expected to influence performance, we also measured the conditional indepen-
dence, given the class, of the two natural and two random views. As an approximation of the statistical inde-
pendence between two sets, we calculated the sum of the pairwise conditional mutual information between
each pair of features, where one of the features belongs to the first view and the second one – to the second
view [16]. The results showed that the random views are 9 times more conditionally dependant than the nat-
ural views. This does not seem to significantly influence the performance; co-training with a natural split is
slightly better than co-training with random split.
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It is interesting to note that in [22] SVM was found to be superior to NB and this was explained with the
NB’s sensitivity to the large number of features because of the violation of the independence assumption. In
our experiments we performed drastic feature selection as discussed in Section 3.3. Hence, the SVM, which
performs well in high-dimensional feature spaces, did not get to illustrate its advantage over NB in such a
setting.

4. Conclusion

In this paper we consider supervised and semi-supervised e-mail classification tasks and investigate the per-
formance of four algorithms: RF, DT, SVM and NB. Our findings can be summarized as follows:

• In both supervised and semi-supervised co-training setting, we have shown that RF is a promising approach
for automatic e-mail filing into folders and spam mail filtering. It outperforms in terms of classification per-
formance well-established algorithms such as DT, SVM and NB, with DT and SVM being also more com-
plex than RF. RF is easy to tune, and runs very efficiently on large datasets with high number of features,
which makes it very attractive for text categorization.

• We introduced a new feature selector TFV and found that it performs better than the popular and compu-
tationally more expensive IG.

• E-mail filing into folders is a complex task, with several different characteristics than the traditional text
categorization. The success of an automatic system highly depends on the user classification style: it works
well for users categorizing e-mail based on topics and sender, and does not work for users categorizing e-
mails based on other criteria, e.g. action performed. E-mail filing into folders is an imbalanced problem, the
topics of the bigger folders typically change over time, and some of the abandoned folders contain only a
few examples.

• Our preliminary experiments did not show an anti-spam filter to be portable across users. It is able to
capture spam characteristics and classifies spam e-mails relatively well, but misclassifies a large number
of legitimate e-mails as spam. More extensive experiments with diverse, non-topic specific corpora, are
needed.

• We compared the performance of a number of algorithms on the benchmark spam filtering corpora LingS-
pam and PU1. Some of them, e.g. SVM, NB, boosted trees and stacking have been previously applied but
on different versions of the data and using different pre-processing which did not allow fair comparison.

• We have shown empirically that co-training can be successfully applied to boost the performance of a spam
e-mail classifier that is given only a very small set of labelled examples. The first view (Body) contained the
words used in the body, while the second one (Subject) contained the words occurring in the subject head-
ers. Although not conditionally independent, these two natural views were shown to be sufficiently redun-
dant, i.e. strong enough to learn the classification task separately. The small number of initially labelled
examples allowed to build a classifier that sustains co-training improvement.

• We investigated the performance of co-training with only one natural view for spam filering. This was moti-
vated by the co-training’s requirement that the dataset is described by two separate views, which is a lim-
itation as the majority of datasets consist of only a single set of features with no obvious way to divide
them. It was shown empirically that co-training using a random split of all the features was as competitive
as co-training with the natural feature sets Body and Subject.

• We conclude that co-training with a random feature split works well if there is high data redundancy as in
the domain of spam e-mail filtering. When this condition is met, a random split of the feature set will pro-
duce two views, each of which can still be used on its own by a classifier to achieve a sufficiently high clas-
sification performance. The conditional independence of the random views was found to be higher that the
conditional independence of the natural views but this does not seem to influence the performance
significantly.

• Although representative, the corpora we used have some limitations. All of them, except the encrypted PU1
corpus, are created by first excluding sensitive personal e-mails which may bias performance. This probably
cannot be avoided as privacy is an important consideration when creating publicly available e-mail corpus.
LingSpam and PU1 do not contain information from the Sender field, html tags and attachments which
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may lead to over-pessimistic performance. On the other hand, LingSpam is a mixture of mailing list mes-
sages with personal e-mails which may lead to over-optimistic results.

Future work will include an adaptation of RF to deal with the problem of concept drift and imbalanced
classification in e-mail classification. As shown, these are important problems for both filing e-mails into fold-
ers and spam e-mail filtering. Ensemble strategies for changing environments are discussed in [26]. For exam-
ple, ensemble members trained on the new chunks of data can be added and old or not very useful ensemble
members deleted. RF can also be extended to learn imbalanced data [9].

A possible avenue for future work in co-training is to develop an algorithm capable of obtaining the opti-
mal (or a near-optimal) split of the features rather than using a random split. A deeper investigation of the
impact of view independence would be very beneficial.
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